Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
Received date: March 28, 2016; Accepted date: April 13, 2016; Published date: April 20, 2016
Citation: Heidari A (2016) Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles. J Biotechnol Biomater 6:e125. doi:10.4172/2155-952X.1000e125
Copyright: © 2016 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Visit for more related articles at Journal of Biotechnology & Biomaterials
Effective conversion of sunlight to electricity has been final goal in organic and inorganic biophotochemistry. In recent years, solar cells manufactured by nanoparticles of Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) use extensively in order to converting sun light (Figures 1-4) [1-16]. Illuminating light equal to semiconductor band gap make produce electron and hole in them. If sunlight be able to supply required energy to produce electron and hole, sunlight can be converting directly to electrical energy. This process is being done easily in narrow band gap semiconductors. Bands’ gap of Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) nanoparticles are from IR to UV range. Since the only 5–10% of sunlight is in this range, in solar cells based on Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) nanoparticles, for making them sensitive to visible light, dyes are used as scavenger. In this editorial, the method of manufacturing electrodes which are synthesized by Mercurochrome have been studied and comparing of their efficiency due to their structure and morphology, have been done by Energy Dispersion Analysis (EDS), Scanning Electron Microscope (SEM), X–Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Differential Thermal Analysis–Thermal Gravim Analysis (DTA–TGA), Energy–Dispersive X–Ray Spectroscopy (EDX), 1HNMR, 13CNMR, UV–Vis, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR) and FT–Raman spectroscopies and also ESI MS, PM5 and DFT studies.
Make the best use of Scientific Research and information from our 700 + peer reviewed, 51ºÚÁϳԹÏÍø Journals